SQLBase Optimizer

Presented By David Isherwood
Prepared By Ravindra Prakash

Gupta Corporation

Becausethismaterial can berelatively complex and because many
of the conceptsdiscussed here build apond one another, | am going
to ask that you hold all questionsuntil theend. Wewill also be
availableafter the presentation to answer questionsasweare
available at anytime during the conference.

Theoptimizer playsavery important rolein arelational database
management system. Although SQL isused to specify what datato
retrieve, thelanguageitself doesnot explain how toretrievethe
data. Usually thereareavariety of waystoretrievedataanditsthe
responsibility of theoptimizer to determinethebest execution
strategy. Thispresentationwill explainthenew featuresavailable
in SQLBase 6.0 to understanding the SQL Base optimizer.



Agenda

® Execution Plans
—Whatis a Plan
— Plan Examples

@ Costing Model

® New Statistics Columns

® Forcing Statistics

® Influencing Execution Plans

Thispresentationisdividedinto fivemajor sections.

Inthefirst section, | will explain what isan execution plan and by
way of example show you how to read the new SQLBase 6.0
execution plans. Thisshould giveyou aclear understanding of
what the optimizer isdoing with your SQL statements.

Secondly, | will discuss the SQL Base optimizer costing model.
Thiswill help you understand why acertain plan was chosen.

Next, | will discussthe new optimizer statistical columnsaddedto
the system catalog for SQLBase6.0.

Then, I'll explain how you can modify these statisticsfor your own
devious purposes.

Andfinally, | discusshow you caninfluence anew execution plan
by modifying the optimizer statistics.



Execution Plans

® What is a Plan?
— A sequence of execution steps
— Single table steps
— Two tables steps
— Resulttable is a CONCEPTUAL table

So, let’ sbegin.

What isan execution plan? What doesit look like?

Simply speaking, an execution planisasequence of stepsthat tells
SQL Basehow to executeaquery.

Each execution plan can only be one of two types. A execution
plan can be a“singletable execution step” or it can bea“two table
execution step” . Each step producesaresult table. Theresult table
may not be aphycical table but most oftenitissimply aconceptual
table. Keepin mindthat adefinition of atable may be auser
definedtable, atemporary table, or aconceptual table.



Execution Plans

® A Single table step
— ldentifies the table and

— the access method
e index,
e hash,
e sequential

Thesingle step tableidentifiesan input table, the access method to retrieve
rowsfrom that table, and the name of result table produced.

The SQL Baseaccessmethodscurrently supported are:

Theindex access method which can use anindex intwo different ways. Inthe
first way, akey valueisknown and the index can be used to position itself and
retrieverowsfrom that point. Or the second way, wheretheindex is scanned
tofind the key value. If your query processing requires columns other than the
key column valuesthen an extraread will be necessary to retrievethe
associated data otherwisetherequest can be satisfied by reading theindex.
Theindex accessmethod isonly aalternativeif the appropriateindex or
indexes exist.

The hash access method usesthe key valueto directly retrievethe data
containing the rows matching the key value. Thetechnique of converting a
key into an direct addresswheretherow existsis known as hashing.
Obviously, hashing could only be used if ahash index existed.

Andfinally, the most simple access method isthe sequential scan. This
technique causes all data pages of the tableto beread. All datapagesfor a
given table are chained together therefore only the data pages of the table need
to beread and we don’t haveto read the entire database file.



Execution Plans

® Two tables Step

— ldentifies two input tables and one output
table

— Quter and inner tables
— Join method

e Nested Loop, or

e Index Loop, or

e Index Merge, or
e Hybrid Hash Join

Thetwo table step execution planidentifiesthetwo tables, the
access method to retrievetherowsfrom thetwo tables, and thejoin
method chosen tojointherowsand theresult table.

Onetableiscalled the outer table and the other is called the inner
table.

Thetwotable step execution plan supportsthefollowingjoin
methods: nested loop, index loop, index merge, and the hybrid hash
join.

And, although the current execution plan output islimited to
showing the details of afew major operations such asthe access
and join methods, thereal execution plan stored in the database
contains other information things like grouping, Unions, projection,
data conversion, and expression evaluation.



Execution Plans

® Example Schema

— Tables
e S (S#, SName, Status, City)
e SP (S#, P#, QTY)
e P (P#, PName, Color, Weight, City)

Todemonstrate someexecution plans| will usethefollowing
database schema. Thisisvery similiar to the database schemathat
Dateusesin histext called“A GuidetoDB2". Thisdatabase
schema consists of three tables.

The Stableisthe supplierstable consisting of supplier number,
name, status, and city. The SPtableisthe shipmentstable
consisting of shipment supplier number, part number, and quantity.
ThePtableisthe partstable consisting of part number, name,
color, weight, and city.



Execution Plans

® Example Schema

— Indexes
e SXCITY on S(City)
o SPXS#P# on SP(S#,P#)
o PXP# on P(P#)
e SXS# on S(S#)
e PXCOLORonP(Color)
e PXWEIGHT on P(Weight)

Theavailableindexesincludeanindex called SXCITY onthe
supplierscity, acomposite or concatenated index ontheshipment’s
supplier number and part number, anindex on the part number of
the part’ stable, anindex on the supplier number of the Supplier
table, and indexes on the color and weight of the Partstable.



Execution Plans

® Example Index Access
— Select * from P where color = ‘Red’ and
weight = 19;
— Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

P PXWEIGHT RESULT

Ok, solet’slook at theresulting execution plan for thisfirst query.
The optimizer hasthree choices (1) asequential scan; (2) index
accessusing theindex PXCOLOR; or (3) index accessusing the
index PXWEIGHT. Heretheoptimizer chosetheindex onweight.
Therefore, SQLBasewill usetheweight toretrieveall rowsthat
match thecriteria“weight=19" andfilter out all rowsthat are NOT
‘Red’ incolor. Theoptimizer chosetheweight index over the color
index becauseit thinksthat there arefewer row that match the
weight criteria. In other words color isapoor choice and would
lead to more /O and CPU processing.

L et meexplainthisoneother way. Theoptimizer feelsthereare
less partsto deal with that have aweight of 19 as opposed to
dealing with all of partsthat haveacolor of ‘Red’.

Thequery result hasbeen given aconceptual nameof RESULT
table.



Execution Plan

® Example Index Access

— Select * from P where color >= ‘Red’ and
weight >= 19;

— Execution Plan:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

P PXCOLOR RESULT

Thissecond query isvery much likethefirst except greater than or
equal to signsare used instead of equal signs. Itsinteresting that
the optimizer now thinksthat the index on color isbetter to use than
theindex onweight. Why? Well, its because of the distribution of
thedata. Sincethecolor ‘Red’ occursnear the end of the alphabet,
the predicate”* color >=‘Red'” selectsasmaller set of rowsthan
the predicate“weight >=19”. Thechoice of index isclearly
dependent on thetarget value being compared.

The SQL Base optimizer issmart enough to determinethe
percentage of dataselected based onthekey valueusedina
predicate and theactual index. Theoptimizer actually performsan
index scan to determinethe selectivity of arange predicate.

Onceagainthe query result has been given the conceptual name of
RESULT table..



Execution Plan

® Example Sequential Access:
— Select * from P where city = ‘London’;
— Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

P RESULT

Thisparticular query leavesno alternative other than to choosea
sequential scan access method. Thereisno availableindex onthe
city inthe Partstable. SQLBasewill scan all of the datapagesin
thePart tableP.



Execution Plan

® Example Index-Merge:

— Select S.SName,SP.P#, SP.Qty from S,SP
where S.S# = SP.S# and S.S# = ‘S1’;

— Execution Plan:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

S SXS# SP SXS#P# RESULT INDEX-MERGE

Thisquery isalittle more complex. It usesajoin-method of index
merge. Inthismethod, SQL Base scanstheindexes of both the
inner and outer tablestaking advantage of the ordering of the keys.
Inthisquery, it usesthe predicate S.S#=*S1’ to position the start
of the scan on the outer index SXS#. The same predicatewill also
decide the end of the scan on the outer index. Theindex SXS#P#is
used to find the matching rowsfrom the shipment table, SP.



Execution Plan

® Example Three-Table Join:

— Select S.* from S,SP,P where S.S# = SP.S#
and SP.P# = P.P# and P.color = ‘Red’;
— Execution Plan:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

P PXCOLOR SP SPXS#P# TMP11 INDEX-LOOP
TMP11 SPXS#P# S SXS# RESULT INDEX-MERGE

Thequery resultsin atwo step execution plan. First, therows of
tables P and SP are joined together to produce the conceptual table
called TMP11. ThenthetablesTM P11 and Sarejoined together to
produce the conceptual table RESULT.

Order of the operations should not betaken literally asno physical
tablesare being created. Assoonasaresult row isavailablefrom
step Lit will participateinthejoin operationin step 2. When arow
iIsavailablefrom thestep 2 it will be made availableto the
application.

Thisquery used theindex on color toretrieve qualified rowsfrom
the Partstable, P. For each row retrieved from P, the index

SPX S#P#isscanned to find the qualifying supplier rowsintable
SP. Then, the SPX S#P# index will beindex-merged with theindex
SXS#tofind thematching supplier tablerowsintable S.



Execution Plans

® A View Query:

— Create view SV1 as select * from S where
Status > 20;

— Select SV1.* from SV1,SP,P where SV1.S# =
SP.S# and SP.P# = P.P# and P.color =
‘Green’;

— Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

Svi TMP1
PXCOLOR TMP21 INDEX-LOOP
SP SXS# P# RESULT INDEX-LOOP

Thisquery isvery similiar to an earlier query but table Sisbeing
replaced by aview called SV 1.

Thefirst row of the execution plan showsadummy step that does
not correspond to any execution but it doesindicatethat the view
has been fully collapsed into therest of the query. Thebasetable
of view SV 1, Sisjoined with table P using theindex loop join
method. Noindex ontheinner supplier table S could be used.

Theresult table TM P21 join with shipment table SPto producethe
final result set.

The main purpose of thisslideisto show theuseof aview inthe
execution plan.



Execution Plans

® An Union View :

— Create view SPV1(S#,P#, Qty) as
select * from SP where Qty > 200
Union
select * from SP where P# in
(select P# from P where Color = ‘Red’);

Thisslide showsthe creation of view based on aquery doing a
UNION of two selects.



Execution Plans

® An Union View Query:

— Select SPV1.*, S.SName from SPV1,S
where SPV1.S# = S.S# and S.Status > 10:;

— Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-l Result-Tbl Join Method

P PXCOLOR TMP1
SP TMP2
SP TMP4
RESULT NESTED LOOP

Thisexecution planisinteresting becausethefirst threerowsof the
exeuction plan outlinethe stepsto executetheview. Sinceyou can
seethe stepsbeing outlined, the view has not been collapsed or
folded into the main query. Theresult of the subquery intheview
isstored inthetable TMP1. Since TM P1 does not participatein the
join operation with any other table, it givesusacluethat it must be
usedinaWHERE clause.

Resultsof two selectsof the UNION clause are stored in conceptual
tables TMP2 and TMPA4.

Theresult table TMP3isnot indicated in the plan asaresult table.
Thisisacurrent limitationin the show planimplementation
becausewedon’t currently haveaway toindicateaUNION
operation.

Finallly, thesupplier table Sisjoined with thetable TMP3 using
the NESTED LOOP join method.



Costing Model

® Cost based
— CPU cost in milliseconds
— /O cost converted into milliseconds

® All possible table access methods
® All possible join methods

® Every possible permutation

® Least expensive plan

The SQL Base optimizer usesacost based techniqueto determine
the best execution plan for any given query asopposed to inferior
syntax or rule-based techniques. Theoptimizer computes CPU and
I/O costswith each different access method and operation. The
CPU costisestimated in millisecondsand I/O costswhich arethe
number of 1/Os per second are also converted to milliseconds. This
way atrade off can be made between |/O versus CPU time.
Performance of access methodsand join operationsisaffected by
thesizeand distribution of thedata. Datacharacteristicsare
captured inthetableand index statistics. A query isbrokendown
into anumber of smaller individual steps. Thesmallest stepis
accessof asingletablewhichisanalyzed for all possibleaccess
methods. All permutationsof table ordering aswell asall possible
joing methods between any two tablesaretried. Eventually, the
optimizer picksthe least expensive plan.

Thefollowing slidestry to show how costsare computed for the
varous access and join methods. Thetopicisvery complex so

we’' ve made some attempt to simplify intheslides. For example,
CPU costs have been eliminated in many placesbut it doesn’t mean
that CPU cost isnot important.



Costing Model

@ Sequential (Table) Access
— 1/O Cost = Number of data pages

— Number of rows and selectivity determines
number of rows returned

The sequential access method of atableresultsinthetablebeing
scanned from one end to the other.

Theassociated cost isdetermined by the number datapagesinthe
table to scanned; plusthe number of rowsinthetableto be checked
for acceptance; plusthe number of rowsselected. The number of
rowsto be selected can be computed by multiplying the selectivity
factor of the predicate by the total number of rowsin thetable.

Theselectivitiy factor isanumber that determineswhat percentage
of rowswill bereturned for agiven predicate. For more
information on how to determinethe selectivity factor for different
predicatesyou should read thenew “ SQL Base Advanced Topics
Guide” coming out with SQL Base6.0.



Table T1(c1)
with
8rows

eSelect * fromTlwhereCl=":1;
eSelectivity Factor =2/8 = 1/4 = 1/distinctcount

Here' san example of what we mean by aselectivity factor. Let’s
supposethereisatablecalled T1 with onecolumn called C1l and it
has 8 rows of data.

What would the selectivity factor befor thequery SELECT *
FROM T1WHERE C1=:1be?

Well, thereareeight rowswithtwo valuesfor each distinct value
presentinthetable. Thatis, therearetwo 2’'s,two4’s,two 5’'s, and
two 6’s. So, the odds of one particular value coming up is 2 out of
8orloverd4.

Another way to computethisistojust usethestatistical value
DISTINCTCOUNT inthe SY SKEY S catalog table. The selectivity
factor isalway equal to oneover the DISTINCTCOUNT.



Costing Model

® Index Access Parameters
— Height of the B-Tree
— Number of leaf pages
— Number of distinct keys
— Cluster count
— Number of rows
— Number of data pages
— Selectivity of the predicate

Theindex access method provides quick accessto datawhen akey
valueisknown. It can also beusedtoretrieverowsinthekey
order. Thecost of index accessisdetermined by thefollowing
parameters:

Height of theB-Tree
Number of |eaf pages
Number of distinct keys
Cluster count

Number of rows

Number of data pages
Selectivity of the predicate



Costing Model

Leaf Page: | 5 10 15 20 30 40 50 60

Data Pages:

Cluster Count = 5

The clustercount isthetotal number of page changesthat would
occur if theentiretable wasread thru theindex. For aperfectly
clustered index, thiscolumnisequal to the number of base data
pagesinthetable. Attheother extreme, the highest valuefor a
totally unclustered index isequal to the number of rowsinthetable.

Theexampleinthisslide showsaclustercount of five. Each arrow
showsthe jumping from one page to another. To scantheentire
index, you would be required to move from one page to another
five times.



Costing Model

® Nested Loops Join
— A simplest join method

— An outer table (say TO) is joined with an
inner table (say TI)

— Think of cross-product and filtering

Thisisone of the most basic join methods. The nested loopjoin
readsarow from thefirst table, called the outer table, and then each
row in the second table, called theinner table, isread asacandidate
for thejoin. Then the second tow in the outer tableisread, and
again each of therowsintheinner tableisread again, and so on
until all row inthe outer table are exhausted. If the outer table has
X number of rowsand theinner tablehasY number of rowsthe
number of rowsto beread areaproduct of X timesY .



® Nested Loops Algorithm

while (more rows in TO)
fetch a row from TO

while there is a row
fetch matching rows from Tl
output the joined rows
end of inner loop
end of outer loop




® Nested Loops I/0O Cost (APPROXIMATE)

® Table Scan = TO_pages + TO _rows *
Tl_pages

® Hash Index = TO_pages + TO _rows *
1

® Index Scan = TO pages + TO_rows *
(height_of _tree)

Thisslideshowsthesimplified formulasfor I/O cost cal culations
for anested |oop or index loop join operation.

For atable scan the 1/O cost isthe number of outer pages plusthe
number of outer rowstimesthe number of inner pages.

For ahash index the 1/O cost isthe number of outer pages plusethe
number of outer rows. Thetimesoneonly impliesthat it takesone
accessto get to theinner row.

Theindex scan I/O cost isthe number of outer pages plusthe
number of outer rowstimesthe height of the B-Tree.



Costing Model

® Hash Access Parameters
— Number of primary pages
— Number of overflow pages

The hash access method providesvery quick accessto adesired
row whenthekey valueisknown. Thatis, it worksonly with equal
predicates. Innormal cases, thel/O costis 1 page but it becomes
complicated inthe presence of overflow pages. Therefore, thel/O
cost for the hash access method isafunction of the number of
primary pagesand the number of overflow pages.



Costing Model

® The costing formulas
— complicated

— accountsfor
e comparison
e datamove
e repeated access
e join methods
e buffer utilization

Inconclusion, the costing formulasthat make up the SQL Base
optimizer cost model can bevery complicated. The costing of an
execution plan also takes into consideration the comparison
oprations, datamovement (likethe staging of datain memory),
repeated accesses, join methods, cache buffer utilization, and the
selectivity factors of available predicates.



New Statistics Columns

® New columns added to
— SYSTABLES
— SYSINDEXES
— SYSCOLUMNS
— SYSKEYS

® Optimizer specific statistics can be
forced

By now you may bewondering, “How do | know what the statistics
are?’. Thestatisticshave been added in SQL Base 6.0 to existing
SQL Basesystem catal ogtables. Thesestatisticshavebeenadded
to the SYSTABLES, SYSCOLUMNS, SYSINDEXES, and
SYSKEY S tables.

We added these new columns so the statisticswill beavailableto
you. And, for thefirst time, in SQLBase 6.0, you will beallowed
toforcethe statisticsto any valuesyou determineto influencethe
behavior of theoptimizer. Thismodification of statisticscan also
beavery useful learning tool.



New Statistics Columns

® What statistics are available

— SYSTABLES

e ROWCOUNT, PAGECOUNT,
ROWPAGECOUNT, LONGPAGECOUNT |,
EXTENTPAGECOUNT, FREESLOTS,
USEDSPACE, FREESPACE, AVGROWLEN,
AVGLONGLEN, GROUPNUM

— SYSCOLUMNS
e AVGCOLLEN, AVGCOLLONGLEN

All of thecolumnsonthisslideareavailableinthe SY STABLES
and SY SCOLUMNS table. But, the ROWCOUNT,
PAGECOUNT, ROWPAGECOUNT, and LONGPAGECOUNT
areoptimizer staticisticsthat you areallowed to modify.



New Statistics Columns

® What statistics are available

— SYSINDEXES

e HEIGHT, INDEXPAGECOUNT, LEAFCOUNT,
CLUSTERCOUNT, PRIMPAGECOUNT,
OVFLPAGECOUNT , AVGKEYLEN, GROUPNUM

— SYSKEYS
o DISTINCTCOUNT

—select count (distinct LNAME) from
EMPLOYEE;

Y ou arenow allowedto modify the HEIGHT,
INDEXPAGECOUNT, LEAFCOUNT, CLUSTERCOUNT,
PRIMPAGECOUNT and OVFLPAGECOUNT optimizer statistical
columnsin the SY SINDEXES table.

And, you areallowedto modify theDISTINCTCOUNT inthe

SY SKEY Stablestoinfluenceyour selectivity factors. Thissample
guery isan example of how you could determine the distinctcount
for aparticular column, inthiscase LASTNAME, from sometable
like EMPLOY EE.



Forcing Statistics

® Forcing table statistics
— Syntax:

e Update Statistics on Table table-name Set
stat-column = expression [, ... ];

— Example:

e update statistics on table ORDER set
ROWCOUNT=10000, PAGECOUNT =100;

The optimizer statisticsthat you can modify can beforced with the
new, improved UPDATE STATISTICS command. In SQLBase 5,
you could update the current optimizer statiticsof atableor an
index withtheUPDATE STATISTICScommand. Now, you can
actually modify certain important statictical columns. The
complete syntax for thisnew command isdescribed inthe
SQLBase 6.0 SQL Language Reference M anual but breifly onthis
slideyou can see that we have added the SET clause. So, now you
can set aparticular statistical columntoyour desired value.

Theexample showsthe changing of the optimizer statisticsfor the
table called ORDER. We are changing the number of rowsto ten
thousand and the number of pageto one hundred.



Forcing Statistics

® Forcing index statistics
— Syntax:

e Update Statistics on Index index-name Set
stat-column = expression [, ... ];

— Example:

e update statistics on index ORDER_IX1 set
HEIGHT = 2, CLUSTERCOUNT = 10000,
LEAFCOUNT =10000/150;

Thisdlide showsthe syntax for updating the statistics of anindex.
And again, asyou can see, we have added the SET clause. This
allowsthe modification of the statistical columnsfor anindex.

Theexampleshowsthemodification of statisticsfor theindex
called ORDER _IX1. Inthisexample, wearemodifyingtheB-Tree
height, the clustercount, and the leafcount.



Forcing Execution Plans

® Designed For

— Database Modeling
e Execution Behavior
e Database Size

® Other Benefits
— Able to Influence Execution Plans

— Not A substitute for A Force Plan
Command

The*forcing of execution plans' isreally abadterm. The
modification of the optimizer statisticsgivesyoutheability to
‘influence’ theexecutionbut it doesn’t necessarily causeyouto
forcetheplan.

Thisfeaturewasimplemented to provideyou with atool to study
the behavior of applicationsduring development whereyou do not
have accessto the production size database. And, to helpyou
model your database using asmaller database.

Asl mentioned, thistool isfor influencing the execution plan. Itis
not aasubstitutefor aFORCE PLAN command. Westill planto
implement aFORCE PLAN facility inthefuture. Thiswill provide
you with away toforceaparticular access plan.



Forcing Execution Plans

® Table P

— update statistics on table P set
rowcount=1000, pagecount=100,
rowpagecount=100;

® Index PXCOLOR

— update statistics on index PXCOLOR set
distinctcount(color)=900, leafcount=5,
height=2, clustercount=100;

Thisslideshowshow we caninfluence execution planshby
modifying the statistics of the Partstable, P and theindex
PXCOLOR.

In the Partstable, we will increase the number of rowsto 1000, the
number of pagesto 100, and the rows per pageto 100. Wewill
increase the distinct number of colorsto 900, theleafcountto 5, the
B-Treeheight to 2, and the clustercount to 100.

Now, let’ ssee how thiseffectsthe query execution plans.



Forcing Execution Plans

® Query: select* from P where color = ‘Red’ and weight = 19;

Plan before:

Outer Thl Ind_Used-O Inner Tbl Ind _Used-l Result-Tbl Join Method

P PXWEIGHT RESULT

Plan after:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

P PXCOLOR RESULT

Thequery to select partswhere the color isRed and weightis 19
previously resulted inthe use of the PXWEIGHT index. Now, that
we've adjusted the optimizer statistics, it chose the PXCOLOR
index. How come?

Well, itchose PXWEIGHT becausethereweremoredistinct
weightsthan number of distinct colorsbut now we' veincreased the
number of distinct colorsto 900 which now exceed the number of
distinct weights. So PXCOL OR isbetter choice.

Tosummarize, by increasing the number of rowsin the partstables
and making PXCOL OR moreattractiveby increasing the number
of distinct keysinthe column color we havemade PXCOLOR a
moreattracitveindex tousethan PXWEIGHT.



Forcing Execution Plans

® QUErY: select * from P where color >= ‘Red’ and weight >= 19;

Plan before:
Outer Thl Ind_Used-O Inner Tbl Ind _Used-l Result-Tbl Join Method

P PXCOLOR RESULT

Plan after:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

P PXWEIGHT RESULT

The UPDATE STATISTICS command does not effect the
selectivity factor for range predicates. Thisquery changed indexes
from PXCOLOR to PXWEIGHT because PXCOLOR isnow a
bigger index with ahigher HEIGHT value (2 asopposed to 1) and a
greater number of leaf pages. PXWEIGHT isanindex witha
leafpage count of 1 and height of 1. So computation wise,
PXWEIGHT isproducing alesser number of total I/Os. Therefore,
PXWEIGHT has become preferable to PXCOLOR.



Forcing Execution Plans

® QUery: selects.s#, SP.P# from S,SP where S.S# = SP.S#;

Execution Plan before:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-lI Result-Tbl Join Method

SP S SXS# RESULT INDEX LOOP

Oneway to influence an execution plan isto changethe statisticsto
makethe current index choice by the optimizer abad choiceand
forcethe optimizer to try the second best plan instead.

Thequery onthisslidenormally would usethe SX S#index with
theindex loop join method.



Forcing Execution Plans

® Force Statistics:

— update statistics on table SP set rowcount = 100,
pagecount=2, rowpagecount=2 ,

— update statistics on index SXS# set
distinctcount(s#) = 100, leafcount=2, height=1,
clustercount=100;

ThePlan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-l Result-Tbl Join Method

S SE SPXS#P# RESULT INDEX-LOOP

Tomaketheoptimizer choseanother plan, let’ sincreasethe
numberson the shipment table, SP. And, increasethe numberson
theindex SX S# that was being used so the optimizer will chose
some other alternative.

L et’ schange the rowcount to 100, the pagecount to 2, and the
number of rowsper pageto 2. Additionally, let’ sincreasethe
number onthe SX S#index.

Thenew plan showsthe usage of anew index, SPX S#P# and the
inner and outer tableshavebeen reversed.

Thisisexampleaplacing anegativeinfluence on onetableand
index to make another table and index |ook more attractive.



What We Learned

® 6.0 Execution Plans

® SQLBase Optimizer Costing Model
® New Statistics Columns

® Modifying the Optimizer Statistics
® Influencing the Execution Plans

Y ou should havelearned that SQL Baseisacost based optimizer.
Wereviewed afew SQL Base 6.0 execution plansand the
mechanicsof the SQL Base optimizer costing model. Y ou should
havealso learned about the new statistical columnsavailableinthe
SQL Base system catal og of SQL Base 6.0 and how you can modify
these optimizer statistics. Andfinally, you have seen how you can
influence the execution plans by modifying the optimizer statistics.



