
Because this material can be relatively complex and because many
of the concepts discussed here build apond one another, I am going
to ask that you hold all questions until the end. We will also be
available after the presentation to answer questions as we are
available at anytime during the conference.

The optimizer plays a very important role in a relational database
management system. Although SQL is used to specify what data to
retrieve, the language itself does not explain how to retrieve the
data. Usually there are a variety of ways to retrieve data and its the
responsibility of the optimizer to determine the best execution
strategy. This presentation will explain the new features available
in SQLBase 6.0 to understanding the SQLBase optimizer.

GUPTA

SQLBase OptimizerSQLBase Optimizer

Presented By David Isherwood
Prepared By Ravindra Prakash

Gupta Corporation

This presentation is divided into five major sections.

In the first section, I will explain what is an execution plan and by
way of example show you how to read the new SQLBase 6.0
execution plans. This should give you a clear understanding of
what the optimizer is doing with your SQL statements.

Secondly, I will discuss the SQLBase optimizer costing model.
This will help you understand why a certain plan was chosen.

Next, I will discuss the new optimizer statistical columns added to
the system catalog for SQLBase 6.0.

Then, I’ll explain how you can modify these statistics for your own
devious purposes.

And finally, I discuss how you can influence a new execution plan
by modifying the optimizer statistics.

GUPTAAgendaAgenda

Execution Plans
– What is a Plan
– Plan Examples

Costing Model
New Statistics Columns
Forcing Statistics
Influencing Execution Plans

So, let’s begin.

What is an execution plan? What does it look like?

Simply speaking, an execution plan is a sequence of steps that tells
SQLBase how to execute a query.

Each execution plan can only be one of two types. A execution
plan can be a “single table execution step” or it can be a “two table
execution step” . Each step produces a result table. The result table
may not be a phycical table but most often it is simply a conceptual
table. Keep in mind that a definition of a table may be a user
defined table, a temporary table, or a conceptual table.

GUPTAExecution PlansExecution Plans

What is a Plan?
– A sequence of execution steps
– Single table steps
– Two tables steps
– Result table is a CONCEPTUALCONCEPTUAL table

The single step table identifies an input table, the access method to retrieve
rows from that table, and the name of result table produced.

The SQLBase access methods currently supported are:

The index access method which can use an index in two different ways. In the
first way, a key value is known and the index can be used to position itself and
retrieve rows from that point. Or the second way, where the index is scanned
to find the key value. If your query processing requires columns other than the
key column values then an extra read will be necessary to retrieve the
associated data otherwise the request can be satisfied by reading the index.
The index access method is only a alternative if the appropriate index or
indexes exist.

The hash access method uses the key value to directly retrieve the data
containing the rows matching the key value. The technique of converting a
key into an direct address where the row exists is known as hashing.
Obviously, hashing could only be used if a hash index existed.

And finally, the most simple access method is the sequential scan. This
technique causes all data pages of the table to be read. All data pages for a
given table are chained together therefore only the data pages of the table need
to be read and we don’t have to read the entire database file.

GUPTAExecution PlansExecution Plans

A Single table step
– Identifies the table and
– the access method

index,
hash,
sequential

The two table step execution plan identifies the two tables, the
access method to retrieve the rows from the two tables, and the join
method chosen to join the rows and the result table.

One table is called the outer table and the other is called the inner
table.

The two table step execution plan supports the following join
methods: nested loop, index loop, index merge, and the hybrid hash
join.

And, although the current execution plan output is limited to
showing the details of a few major operations such as the access
and join methods, the real execution plan stored in the database
contains other information things like grouping, Unions, projection,
data conversion, and expression evaluation.

GUPTAExecution PlansExecution Plans

Two tables Step
– Identifies two input tables and one output

table
– Outer and inner tables
– Join method

Nested Loop, or
Index Loop, or
Index Merge, or
Hybrid Hash Join

To demonstrate some execution plans I will use the following
database schema. This is very similiar to the database schema that
Date uses in his text called “A Guide to DB2”. This database
schema consists of three tables.

The S table is the suppliers table consisting of supplier number,
name, status, and city. The SP table is the shipments table
consisting of shipment supplier number, part number, and quantity.
The P table is the parts table consisting of part number, name,
color, weight, and city.

GUPTAExecution PlansExecution Plans

Example Schema
– Tables

S (S#, SName, Status, City)
SP (S#, P#, QTY)
P (P#, PName, Color, Weight, City)

The available indexes include an index called SXCITY on the
suppliers city, a composite or concatenated index on the shipment’s
supplier number and part number, an index on the part number of
the part’s table, an index on the supplier number of the Supplier
table, and indexes on the color and weight of the Parts table.

GUPTAExecution PlansExecution Plans

Example Schema
– Indexes

SXCITY on S(City)
SPXS#P# on SP(S#,P#)
PXP# on P(P#)
SXS# on S(S#)
PXCOLOR on P(Color)
PXWEIGHT on P(Weight)

Ok, so let’s look at the resulting execution plan for this first query.
The optimizer has three choices (1) a sequential scan; (2) index
access using the index PXCOLOR; or (3) index access using the
index PXWEIGHT. Here the optimizer chose the index on weight.
Therefore, SQLBase will use the weight to retrieve all rows that
match the criteria “weight=19” and filter out all rows that are NOT
‘Red’ in color. The optimizer chose the weight index over the color
index because it thinks that there are fewer row that match the
weight criteria. In other words color is a poor choice and would
lead to more I/O and CPU processing.

Let me explain this one other way. The optimizer feels there are
less parts to deal with that have a weight of 19 as opposed to
dealing with all of parts that have a color of ‘Red’.

The query result has been given a conceptual name of RESULT
table.

GUPTAExecution PlansExecution Plans

Example Index Access
– Select * from P where color = ‘Red’ and

weight = 19;
– Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P PXWEIGHT RESULT

This second query is very much like the first except greater than or
equal to signs are used instead of equal signs. Its interesting that
the optimizer now thinks that the index on color is better to use than
the index on weight. Why? Well, its because of the distribution of
the data. Since the color ‘Red’ occurs near the end of the alphabet,
the predicate “‘color >= ‘Red’” selects a smaller set of rows than
the predicate “weight >= 19”. The choice of index is clearly
dependent on the target value being compared.

The SQLBase optimizer is smart enough to determine the
percentage of data selected based on the key value used in a
predicate and the actual index. The optimizer actually performs an
index scan to determine the selectivity of a range predicate.

Once again the query result has been given the conceptual name of
RESULT table..

GUPTAExecution PlanExecution Plan

Example Index Access
– Select * from P where color >= ‘Red’ and

weight >= 19;
– Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P PXCOLOR RESULT

This particular query leaves no alternative other than to choose a
sequential scan access method. There is no available index on the
city in the Parts table. SQLBase will scan all of the data pages in
the Part table P.

GUPTAExecution PlanExecution Plan

Example Sequential Access:
– Select * from P where city = ‘London’;
– Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P RESULT

This query is a little more complex. It uses a join-method of index
merge. In this method, SQLBase scans the indexes of both the
inner and outer tables taking advantage of the ordering of the keys.
In this query, it uses the predicate S.S# = ‘S1’ to position the start
of the scan on the outer index SXS#. The same predicate will also
decide the end of the scan on the outer index. The index SXS#P# is
used to find the matching rows from the shipment table, SP.

GUPTAExecution PlanExecution Plan

 Example Index-Merge:
– Select S.SName,SP.P#, SP.Qty from S,SP

where S.S# = SP.S# and S.S# = ‘S1’;
– Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

S SXS# SP SXS#P# RESULT INDEX-MERGE

The query results in a two step execution plan. First, the rows of
tables P and SP are joined together to produce the conceptual table
called TMP11. Then the tables TMP11 and S are joined together to
produce the conceptual table RESULT.

Order of the operations should not be taken literally as no physical
tables are being created. As soon as a result row is available from
step 1 it will participate in the join operation in step 2. When a row
is available from the step 2 it will be made available to the
application.

This query used the index on color to retrieve qualified rows from
the Parts table, P. For each row retrieved from P, the index
SPXS#P# is scanned to find the qualifying supplier rows in table
SP. Then, the SPXS#P# index will be index-merged with the index
SXS# to find the matching supplier table rows in table S.

GUPTAExecution PlanExecution Plan

Example Three-Table Join:
– Select S.* from S,SP,P where S.S# = SP.S#

and SP.P# = P.P# and P.color = ‘Red’;
– Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P PXCOLOR SP SPXS#P# TMP11 INDEX-LOOP
TMP11 SPXS#P# S SXS# RESULT INDEX-MERGE

This query is very similiar to an earlier query but table S is being
replaced by a view called SV1.

The first row of the execution plan shows a dummy step that does
not correspond to any execution but it does indicate that the view
has been fully collapsed into the rest of the query. The base table
of view SV1, S is joined with table P using the index loop join
method. No index on the inner supplier table S could be used.

The result table TMP21 join with shipment table SP to produce the
final result set.

The main purpose of this slide is to show the use of a view in the
execution plan.

GUPTAExecution PlansExecution Plans

A View Query:
– Create view SV1 as select * from S where

Status > 20;
– Select SV1.* from SV1,SP,P where SV1.S# =

SP.S# and SP.P# = P.P# and P.color =
‘Green’;

– Execution Plan:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

 SV1 TMP1
P PXCOLOR S TMP21 INDEX-LOOP
TMP21 SP SXS# P# RESULT INDEX-LOOP

This slide shows the creation of view based on a query doing a
UNION of two selects.

GUPTAExecution PlansExecution Plans

An Union View :
– Create view SPV1(S#,P#, Qty) as

select * from SP where Qty > 200
Union
select * from SP where P# in
(select P# from P where Color = ‘Red’);

This execution plan is interesting because the first three rows of the
exeuction plan outline the steps to execute the view. Since you can
see the steps being outlined, the view has not been collapsed or
folded into the main query. The result of the subquery in the view
is stored in the table TMP1. Since TMP1 does not participate in the
join operation with any other table, it gives us a clue that it must be
used in a WHERE clause.

Results of two selects of the UNION clause are stored in conceptual
tables TMP2 and TMP4.

The result table TMP3 is not indicated in the plan as a result table.
This is a current limitation in the show plan implementation
because we don’t currently have a way to indicate a UNION
operation.

Finallly, the supplier table S is joined with the table TMP3 using
the NESTED LOOP join method.

GUPTAExecution PlansExecution Plans

An Union View Query:
– Select SPV1.*, S.SName from SPV1,S

where SPV1.S# = S.S# and S.Status > 10;
– Execution Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

 P PXCOLOR TMP1

 SP TMP2

 SP TMP4

S TMP3 RESULT NESTED LOOP

The SQLBase optimizer uses a cost based technique to determine
the best execution plan for any given query as opposed to inferior
syntax or rule-based techniques. The optimizer computes CPU and
I/O costs with each different access method and operation. The
CPU cost is estimated in milliseconds and I/O costs which are the
number of I/Os per second are also converted to milliseconds. This
way a trade off can be made between I/O versus CPU time.
Performance of access methods and join operations is affected by
the size and distribution of the data. Data characteristics are
captured in the table and index statistics. A query is broken down
into a number of smaller individual steps. The smallest step is
access of a single table which is analyzed for all possible access
methods. All permutations of table ordering as well as all possible
joing methods between any two tables are tried. Eventually, the
optimizer picks the least expensive plan.

The following slides try to show how costs are computed for the
varous access and join methods. The topic is very complex so
we’ve made some attempt to simplify in the slides. For example,
CPU costs have been eliminated in many places but it doesn’t mean
that CPU cost is not important.

GUPTACosting ModelCosting Model

Cost based
– CPU cost in milliseconds
– I/O cost converted into milliseconds

All possible table access methods
All possible join methods
Every possible permutation
Least expensive plan

The sequential access method of a table results in the table being
scanned from one end to the other.

The associated cost is determined by the number data pages in the
table to scanned; plus the number of rows in the table to be checked
for acceptance; plus the number of rows selected. The number of
rows to be selected can be computed by multiplying the selectivity
factor of the predicate by the total number of rows in the table.

The selectivitiy factor is a number that determines what percentage
of rows will be returned for a given predicate. For more
information on how to determine the selectivity factor for different
predicates you should read the new “SQLBase Advanced Topics
Guide” coming out with SQLBase 6.0.

GUPTACosting ModelCosting Model

Sequential (Table) Access
– I/O Cost = Number of data pages
– Number of rows and selectivity determines

number of rows returned

Here’s an example of what we mean by a selectivity factor. Let’s
suppose there is a table called T1 with one column called C1 and it
has 8 rows of data.

What would the selectivity factor be for the query SELECT *
FROM T1 WHERE C1 = :1 be?

Well, there are eight rows with two values for each distinct value
present in the table. That is, there are two 2’s, two 4’s, two 5’s, and
two 6’s. So, the odds of one particular value coming up is 2 out of
8 or 1 over 4.

Another way to compute this is to just use the statistical value
DISTINCTCOUNT in the SYSKEYS catalog table. The selectivity
factor is alway equal to one over the DISTINCTCOUNT.

GUPTA

2
2
4
4
5
5
6
6

Table T1(c1)
with

8 rows

Select * from T1 where C1 = :1;
Selectivity Factor = 2/8 = 1/4 = 1/distinctcount

The index access method provides quick access to data when a key
value is known. It can also be used to retrieve rows in the key
order. The cost of index access is determined by the following
parameters:

Height of the B-Tree

Number of leaf pages

Number of distinct keys
Cluster count

Number of rows
Number of data pages

Selectivity of the predicate

GUPTACosting ModelCosting Model

Index Access Parameters
– Height of the B-Tree
– Number of leaf pages
– Number of distinct keys
– Cluster count
– Number of rows
– Number of data pages
– Selectivity of the predicate

The clustercount is the total number of page changes that would
occur if the entire table was read thru the index. For a perfectly
clustered index, this column is equal to the number of base data
pages in the table. At the other extreme, the highest value for a
totally unclustered index is equal to the number of rows in the table.

The example in this slide shows a clustercount of five. Each arrow
shows the jumping from one page to another. To scan the entire
index, you would be required to move from one page to another
five times.

GUPTACosting ModelCosting Model

Leaf Page: 5 10 15 20 30 40 50 60

5
10
30

60

15
20
40
50

Data Pages:

Cluster Count = 5

This is one of the most basic join methods. The nested loop join
reads a row from the first table, called the outer table, and then each
row in the second table, called the inner table, is read as a candidate
for the join. Then the second tow in the outer table is read, and
again each of the rows in the inner table is read again, and so on
until all row in the outer table are exhausted. If the outer table has
X number of rows and the inner table has Y number of rows the
number of rows to be read are a product of X times Y.

GUPTACosting ModelCosting Model

Nested Loops Join
– A simplest join method
– An outer table (say TO) is joined with an

inner table (say TI)
– Think of cross-product and filtering

GUPTA

Nested Loops Algorithm
 while (more rows in TO)
 fetch a row from TO
 while there is a row
 fetch matching rows from TI
 output the joined rows
 end of inner loop
 end of outer loop

This slide shows the simplified formulas for I/O cost calculations
for a nested loop or index loop join operation.

For a table scan the I/O cost is the number of outer pages plus the
number of outer rows times the number of inner pages.

For a hash index the I/O cost is the number of outer pages pluse the
number of outer rows. The times one only implies that it takes one
access to get to the inner row.

The index scan I/O cost is the number of outer pages plus the
number of outer rows times the height of the B-Tree.

GUPTA

Nested Loops I/O Cost (APPROXIMATE)

Table Scan = TO_pages + TO_rows *
TI_pages
Hash Index = TO_pages + TO_rows *
1
Index Scan = TO_pages + TO_rows *
(height_of_tree)

The hash access method provides very quick access to a desired
row when the key value is known. That is, it works only with equal
predicates. In normal cases, the I/O cost is 1 page but it becomes
complicated in the presence of overflow pages. Therefore, the I/O
cost for the hash access method is a function of the number of
primary pages and the number of overflow pages.

GUPTACosting ModelCosting Model

Hash Access Parameters
– Number of primary pages
– Number of overflow pages

In conclusion, the costing formulas that make up the SQLBase
optimizer cost model can be very complicated. The costing of an
execution plan also takes into consideration the comparison
oprations, data movement (like the staging of data in memory),
repeated accesses, join methods, cache buffer utilization, and the
selectivity factors of available predicates.

GUPTACosting ModelCosting Model

The costing formulas
– complicated
– accounts for

comparison
data move
repeated access
join methods
buffer utilization

By now you may be wondering, “How do I know what the statistics
are?”. The statistics have been added in SQLBase 6.0 to existing
SQLBase system catalog tables. These statistics have been added
to the SYSTABLES, SYSCOLUMNS, SYSINDEXES, and
SYSKEYS tables.

We added these new columns so the statistics will be available to
you. And, for the first time, in SQLBase 6.0, you will be allowed
to force the statistics to any values you determine to influence the
behavior of the optimizer. This modification of statistics can also
be a very useful learning tool.

GUPTANew Statistics ColumnsNew Statistics Columns

New columns added to
– SYSTABLES
– SYSINDEXES
– SYSCOLUMNS
– SYSKEYS

Optimizer specific statistics can be
forced

All of the columns on this slide are available in the SYSTABLES
and SYSCOLUMNS table. But, the ROWCOUNT,
PAGECOUNT, ROWPAGECOUNT, and LONGPAGECOUNT
are optimizer staticistics that you are allowed to modify.

GUPTANew Statistics ColumnsNew Statistics Columns

What statistics are available
– SYSTABLES

ROWCOUNT, PAGECOUNT,ROWCOUNT, PAGECOUNT,
ROWPAGECOUNT, LONGPAGECOUNTROWPAGECOUNT, LONGPAGECOUNT ,
EXTENTPAGECOUNT, FREESLOTS,
USEDSPACE, FREESPACE, AVGROWLEN,
AVGLONGLEN, GROUPNUM

– SYSCOLUMNS
AVGCOLLEN, AVGCOLLONGLEN

You are now allowed to modify the HEIGHT,
INDEXPAGECOUNT, LEAFCOUNT, CLUSTERCOUNT,
PRIMPAGECOUNT and OVFLPAGECOUNT optimizer statistical
columns in the SYSINDEXES table.

And, you are allowed to modify the DISTINCTCOUNT in the
SYSKEYS tables to influence your selectivity factors. This sample
query is an example of how you could determine the distinctcount
for a particular column, in this case LASTNAME, from some table
like EMPLOYEE.

GUPTANew Statistics ColumnsNew Statistics Columns

What statistics are available
– SYSINDEXES

HEIGHT, INDEXPAGECOUNT, LEAFCOUNT,HEIGHT, INDEXPAGECOUNT, LEAFCOUNT,
CLUSTERCOUNT, PRIMPAGECOUNT,CLUSTERCOUNT, PRIMPAGECOUNT,
OVFLPAGECOUNTOVFLPAGECOUNT , AVGKEYLEN, GROUPNUM

– SYSKEYS
DISTINCTCOUNTDISTINCTCOUNT

– select count (distinct LNAME) from
EMPLOYEE;

The optimizer statistics that you can modify can be forced with the
new, improved UPDATE STATISTICS command. In SQLBase 5,
you could update the current optimizer statitics of a table or an
index with the UPDATE STATISTICS command. Now, you can
actually modify certain important statictical columns. The
complete syntax for this new command is described in the
SQLBase 6.0 SQL Language Reference Manual but breifly on this
slide you can see that we have added the SET clause. So, now you
can set a particular statistical column to your desired value.

The example shows the changing of the optimizer statistics for the
table called ORDER. We are changing the number of rows to ten
thousand and the number of page to one hundred.

GUPTAForcing StatisticsForcing Statistics

Forcing table statistics
– Syntax:

Update Statistics on Table table-name Set
stat-column = expression [, ...] ;

– Example:
update statistics on table ORDER set
ROWCOUNT= 10000, PAGECOUNT = 100;

This slide shows the syntax for updating the statistics of an index.
And again, as you can see, we have added the SET clause. This
allows the modification of the statistical columns for an index.

The example shows the modification of statistics for the index
called ORDER_IX1. In this example, we are modifying the B-Tree
height, the clustercount, and the leafcount.

GUPTAForcing StatisticsForcing Statistics

Forcing index statistics
– Syntax:

Update Statistics on Index index-name Set
stat-column = expression [, ...] ;

– Example:
update statistics on index ORDER_IX1 set
HEIGHT = 2, CLUSTERCOUNT = 10000,
LEAFCOUNT = 10000/150;

The ‘forcing of execution plans’ is really a bad term. The
modification of the optimizer statistics gives you the ability to
‘influence’ the execution but it doesn’t necessarily cause you to
force the plan.

This feature was implemented to provide you with a tool to study
the behavior of applications during development where you do not
have access to the production size database. And, to help you
model your database using a smaller database.

As I mentioned, this tool is for influencing the execution plan. It is
not a a substitute for a FORCE PLAN command. We still plan to
implement a FORCE PLAN facility in the future. This will provide
you with a way to force a particular access plan.

GUPTAForcing Execution PlansForcing Execution Plans

Designed For
– Database Modeling

Execution Behavior
Database Size

Other Benefits
– Able to Influence Execution Plans
– Not A substitute for A Force Plan

Command

This slide shows how we can influence execution plans by
modifying the statistics of the Parts table, P and the index
PXCOLOR.

In the Parts table, we will increase the number of rows to 1000, the
number of pages to 100, and the rows per page to 100. We will
increase the distinct number of colors to 900, the leafcount to 5, the
B-Tree height to 2, and the clustercount to 100.

Now, let’s see how this effects the query execution plans.

GUPTAForcing Execution PlansForcing Execution Plans

Table P
– update statistics on table P set

rowcount=1000, pagecount=100,
rowpagecount=100;

Index PXCOLOR
– update statistics on index PXCOLOR set

distinctcount(color)=900, leafcount=5,
height=2, clustercount=100;

The query to select parts where the color is Red and weight is 19
previously resulted in the use of the PXWEIGHT index. Now, that
we’ve adjusted the optimizer statistics, it chose the PXCOLOR
index. How come?

Well, it chose PXWEIGHT because there were more distinct
weights than number of distinct colors but now we’ve increased the
number of distinct colors to 900 which now exceed the number of
distinct weights. So PXCOLOR is better choice.

To summarize, by increasing the number of rows in the parts tables
and making PXCOLOR more attractive by increasing the number
of distinct keys in the column color we have made PXCOLOR a
more attracitve index to use than PXWEIGHT.

GUPTAForcing Execution PlansForcing Execution Plans

Query: Select * from P where color = ‘Red’ and weight = 19;

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P PXWEIGHT RESULT

Plan afterafter:

Plan beforebefore :

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

 P PXCOLOR RESULT

The UPDATE STATISTICS command does not effect the
selectivity factor for range predicates. This query changed indexes
from PXCOLOR to PXWEIGHT because PXCOLOR is now a
bigger index with a higher HEIGHT value (2 as opposed to 1) and a
greater number of leaf pages. PXWEIGHT is an index with a
leafpage count of 1 and height of 1. So computation wise,
PXWEIGHT is producing a lesser number of total I/Os. Therefore,
PXWEIGHT has become preferable to PXCOLOR.

GUPTAForcing Execution PlansForcing Execution Plans

Query: Select * from P where color >= ‘Red’ and weight >= 19;

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P PXCOLOR RESULT

Plan before:before:

Plan after:after:
Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

P PXWEIGHT RESULT

One way to influence an execution plan is to change the statistics to
make the current index choice by the optimizer a bad choice and
force the optimizer to try the second best plan instead.

The query on this slide normally would use the SXS# index with
the index loop join method.

GUPTAForcing Execution PlansForcing Execution Plans

Query: Select S.S#, SP.P# from S,SP where S.S# = SP.S#;

Execution Plan before:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

SP S SXS# RESULT INDEX LOOP

To make the optimizer chose another plan, let’s increase the
numbers on the shipment table, SP. And, increase the numbers on
the index SXS# that was being used so the optimizer will chose
some other alternative.

Let’s change the rowcount to 100, the pagecount to 2, and the
number of rows per page to 2. Additionally, let’s increase the
number on the SXS# index.

The new plan shows the usage of a new index, SPXS#P# and the
inner and outer tables have been reversed.

This is example a placing a negative influence on one table and
index to make another table and index look more attractive.

GUPTAForcing Execution PlansForcing Execution Plans

Force Statistics:
– update statistics on table SP set rowcount = 100,

pagecount=2, rowpagecount=2 ;
– update statistics on index SXS# set

distinctcount(s#) = 100, leafcount=2, height=1,
clustercount=100;

The Plan:

Outer Tbl Ind_Used-O Inner Tbl Ind _Used-I Result-Tbl Join Method

 S SP SPXS#P# RESULT INDEX-LOOP

You should have learned that SQLBase is a cost based optimizer.
We reviewed a few SQLBase 6.0 execution plans and the
mechanics of the SQLBase optimizer costing model. You should
have also learned about the new statistical columns available in the
SQLBase system catalog of SQLBase 6.0 and how you can modify
these optimizer statistics. And finally, you have seen how you can
influence the execution plans by modifying the optimizer statistics.

GUPTAWhat We LearnedWhat We Learned

6.0 Execution Plans
SQLBase Optimizer Costing Model
New Statistics Columns
Modifying the Optimizer Statistics
Influencing the Execution Plans

