NAME
regcomp, regexec, regerror, regfree — regular-expression library

SYNOPSIS
#include <sys/types.h>
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);

int regexec(const regex_t *preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags);
size_t regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size);

void regfree(regex_t *preg);

DESCRIPTION
These routines implement POSIX 1003.2 regular expressions (“RE’’s); see regex(7). Regcomp compiles an
RE written as a string into an internal form, regexec matches that internal form against a string and reports
results, regerror transforms error codes from either into human-readable messages, and regfree frees any
dynamically-allocated storage used by the internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t, the former for compiled inter-
nal forms and the latter for match reporting. It also declares the four functions, a type regoff t, and a num-
ber of constants with names starting with “REG_".

Regcomp compiles the regular expression contained in the pattern string, subject to the flags in cflags, and
places the results in the regex_t structure pointed to by preg. Cflags is the bitwise OR of zero or more of
the following flags:

REG_EXTENDED Compile modern (“extended’) REs, rather than the obsolete (“basic™”) REs that are
the default.

REG_BASIC This is a synonym for 0, provided as a counterpart to REG_EXTENDED to improve
readability. This is an extension, compatible with but not specified by POSIX
1003.2, and should be used with caution in software intended to be portable to other
systems.

REG_NOSPEC Compile with recognition of all special characters turned off. All characters are thus
considered ordinary, so the “RE” is a literal string. This is an extension, compatible
with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. REG_EXTENDED and REG_NOSPEC
may not be used in the same call to regcomp.

REG_ICASE Compile for matching that ignores upper/lower case distinctions. See regex (7).
REG_NOSUB Compile for matching that need only report success or failure, not what was matched.

REG_NEWLINE Compile for newline-sensitive matching. By default, newline is a completely ordi-
nary character with no special meaning in either REs or strings. With this flag, ‘[™
bracket expressions and ‘.” never match newline, a “>> anchor matches the null string
after any newline in the string in addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the string in addition to its normal func-
tion.

REG_PEND The regular expression ends, not at the first NUL, but just before the character point-
ed to by the re_endp member of the structure pointed to by preg. The re_endp mem-
ber is of type const char *. This flag permits inclusion of NULs in the RE; they are
considered ordinary characters. This is an extension, compatible with but not speci-
fied by POSIX 1003.2, and should be used with caution in software intended to be
portable to other systems.

When successful, regcomp returns 0 and fills in the structure pointed to by preg. One member of that struc-
ture (other than re_endp) is publicized: re_nsub, of type size t, contains the number of parenthesized
subexpressions within the RE (except that the value of this member is undefined if the REG_NOSUB flag
was used). If regcomp fails, it returns a non-zero error code; see DIAGNOSTICS.

Regexec matches the compiled RE pointed to by preg against the string, subject to the flags in eflags, and
reports results using nmatch, pmatch, and the returned value. The RE must have been compiled by a previ-
ous invocation of regcomp. The compiled form is not altered during execution of regexec, so a single com-

REGEX(3) REGEX(3)

piled RE can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be the text of an entire line,
with the NUL indicating the end of the line. (That is, any other end-of-line marker is considered to have
been removed and replaced by the NUL.) The eflags argument is the bitwise OR of zero or more of the fol-
lowing flags:

REG_NOTBOL The first character of the string is not the beginning of a line, so the “** anchor should
not match before it. This does not affect the behavior of newlines under REG_NEW-
LINE.

REG_NOTEOL The NUL terminating the string does not end a line, so the ‘$’ anchor should not
match before it. This does not affect the behavior of newlines under REG_NEW-
LINE.

REG_STARTEND The string is considered to start at string + pmatch[0].rm_so and to have a terminating
NUL located at string + pmatch[0].rm_eo (there need not actually be a NUL at that
location), regardless of the value of nmatch. See below for the definition of pmatch
and nmatch. This is an extension, compatible with but not specified by POSIX
1003.2, and should be used with caution in software intended to be portable to other
systems. Note that a non-zero rm_so does not imply REG_NOTBOL; REG_STAR-
TEND affects only the location of the string, not how it is matched.

See regex(7) for a discussion of what is matched in situations where an RE or a portion thereof could match
any of several substrings of string.

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH for failure. Other non-ze-
ro error codes may be returned in exceptional situations; see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch is 0, regexec ignores the pmatch
argument (but see below for the case where REG_STARTEND is specified). Otherwise, pmatch points to
an array of nmatch structures of type regmatch_t. Such a structure has at least the members rm_so and
rm_eo, both of type regoff_t (a signed arithmetic type at least as large as an off_t and a ssize_t), containing
respectively the offset of the first character of a substring and the offset of the first character after the end of
the substring. Offsets are measured from the beginning of the string argument given to regexec. An empty
substring is denoted by equal offsets, both indicating the character following the empty substring.

The Oth member of the pmatch array is filled in to indicate what substring of string was matched by the en-
tire RE. Remaining members report what substring was matched by parenthesized subexpressions within
the RE; member i reports subexpression i, with subexpressions counted (starting at 1) by the order of their
opening parentheses in the RE, left to right. Unused entries in the array—corresponding either to subex-
pressions that did not participate in the match at all, or to subexpressions that do not exist in the RE (that is,
i > preg—>re_nsub)—have both rm_so and rm_eo set to —1. If a subexpression participated in the match
several times, the reported substring is the last one it matched. (Note, as an example in particular, that
when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches the three ‘b’s and then an in-
finite number of empty strings following the last ‘b’, so the reported substring is one of the empties.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t (even if nmatch is 0 or
REG_NOSUB was specified), to hold the input offsets for REG_STARTEND. Use for output is still entire-
ly controlled by nmatch; if nmatch is 0 or REG_NOSUB was specified, the value of pmatch[0] will not be
changed by a successful regexec.

Regerror maps a non-zero errcode from either regcomp or regexec to a human-readable, printable message.
If preg is non-NULL, the error code should have arisen from use of the regex _t pointed to by preg, and if
the error code came from regcomp, it should have been the result from the most recent regcomp using that
regex_t. (Regerror may be able to supply a more detailed message using information from the regex t.)
Regerror places the NUL-terminated message into the buffer pointed to by errbuf, limiting the length (in-
cluding the NUL) to at most errbuf_size bytes. If the whole message won’t fit, as much of it as will fit be-
fore the terminating NUL is supplied. In any case, the returned value is the size of buffer needed to hold
the whole message (including terminating NUL). If errbuf_size is 0, errbuf is ignored but the return value

2 25 Sept 1997

REGEX(3) REGEX(3)

is still correct.

If the errcode given to regerror is first ORed with REG_ITOA, the “message” that results is the printable
name of the error code, e.g. “REG_NOMATCH?”, rather than an explanation thereof. If errcode is
REG_ATOI, then preg shall be non-NULL and the re_endp member of the structure it points to must point
to the printable name of an error code; in this case, the result in errbuf is the decimal digits of the numeric
value of the error code (0 if the name is not recognized). REG_ITOA and REG_ATOI are intended primar-
ily as debugging facilities; they are extensions, compatible with but not specified by POSIX 1003.2, and
should be used with caution in software intended to be portable to other systems. Be warned also that they
are considered experimental and changes are possible.

Regfree frees any dynamically-allocated storage associated with the compiled RE pointed to by preg. The
remaining regex_t is no longer a valid compiled RE and the effect of supplying it to regexec or regerror is
undefined.

None of these functions references global variables except for tables of constants; all are safe for use from
multiple threads if the arguments are safe.

IMPLEMENTATION CHOICES
There are a number of decisions that 1003.2 leaves up to the implementor, either by explicitly saying “un-
defined” or by virtue of them being forbidden by the RE grammar. This implementation treats them as fol-
lows.

See regex(7) for a discussion of the definition of case-independent matching.

There is no particular limit on the length of REs, except insofar as memory is limited. Memory usage is ap-
proximately linear in RE size, and largely insensitive to RE complexity, except for bounded repetitions.
See BUGS for one short RE using them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by 1003.2 (such magic mean-
ings occur only in obsolete [“basic™] RES) is taken as an ordinary character.

Any unmatched [isa REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The endpoint of one range cannot be-
gin another.

RE_DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition operator. A repetition operator
cannot begin an expression or subexpression or follow “** or *|’.

‘|” cannot appear first or last in a (sub)expression or after another ‘|’, i.e. an operand of ‘|’ cannot be an
empty subexpression. An empty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. An empty string is not a legal RE.

A ‘L followed by a digit is considered the beginning of bounds for a bounded repetition, which must then
follow the syntax for bounds. A “{’ not followed by a digit is considered an ordinary character.

“”and ‘$’ beginning and ending subexpressions in obsolete (““basic’’) REs are anchors, not ordinary char-
acters.

SEE ALSO
grep(1), regex(7)
POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding for Regular Expression
Matching).

DIAGNOSTICS
Non-zero error codes from regcomp and regexec include the following:

REG_NOMATCH regexec() failed to match

REG_BADPAT invalid regular expression
REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class

25 Sept 1997 3

REGEX(3) REGEX(3)

REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced

REG_EPAREN parentheses () not balanced

REG_EBRACE braces { } not balanced

REG_BADBR invalid repetition count(s) in { }

REG_ERANGE invalid character range in []

REG_ESPACE ran out of memory

REG_BADRPT ?,*, or + operand invalid

REG_EMPTY empty (sub)expression

REG_ASSERT ““can’t happen”—you found a bug

REG_INVARG invalid argument, e.g. negative-length string
HISTORY

BUGS

Written by Henry Spencer, henry@zoo.toronto.edu.

This is an alpha release with known defects. Please report problems.

There is one known functionality bug. The implementation of internationalization is incomplete: the locale
is always assumed to be the default one of 1003.2, and only the collating elements etc. of that locale are
available.

The back-reference code is subtle and doubts linger about its correctness in complex cases.

Regexec performance is poor. This will improve with later releases. Nmatch exceeding 0 is expensive;
nmatch exceeding 1 is worse. Regexec is largely insensitive to RE complexity except that back references
are massively expensive. RE length does matter; in particular, there is a strong speed bonus for keeping RE
length under about 30 characters, with most special characters counting roughly double.

Regcomp implements bounded repetitions by macro expansion, which is costly in time and space if counts
are large or bounded repetitions are nested. An RE like, say,
‘((((@{1,1001){1,100}){1,100}1){1,100}){1,100}" will (eventually) run almost any existing machine out of
swap space.

There are suspected problems with response to obscure error conditions. Notably, certain kinds of internal
overflow, produced only by truly enormous REs or by multiply nested bounded repetitions, are probably not
handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because)’ is a special character only in the pres-
ence of a previous unmatched ‘(’. This can’t be fixed until the spec is fixed.

The standard’s definition of back references is vague. For example, does ‘a\(\(b\)*\2\)*d’ match ‘abbbd’?
Until the standard is clarified, behavior in such cases should not be relied on.

The implementation of word-boundary matching is a bit of a kludge, and bugs may lurk in combinations of
word-boundary matching and anchoring.

25 Sept 1997

REGEX(7) REGEX(7)

NAME
regex — POSIX 1003.2 regular expressions

DESCRIPTION
Regular expressions (“RE”s), as defined in POSIX 1003.2, come in two forms: modern REs (roughly those
of egrep; 1003.2 calls these “extended” REs) and obsolete REs (roughly those of ed; 1003.2 “basic” RES).
Obsolete REs mostly exist for backward compatibility in some old programs; they will be discussed at the
end. 1003.2 leaves some aspects of RE syntax and semantics open; “t’ marks decisions on these aspects
that may not be fully portable to other 1003.2 implementations.

A (modern) RE is onet or more non-emptyt branches, separated by ‘|’. It matches anything that matches
one of the branches.

A branch is onet or more pieces, concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is an atom possibly followed by a singlet *’, “+’, *?”, or bound. An atom followed by “*’ matches
a sequence of 0 or more matches of the atom. An atom followed by ‘+’ matches a sequence of 1 or more
matches of the atom. An atom followed by ‘?” matches a sequence of 0 or 1 matches of the atom.

A bound is ‘{” followed by an unsigned decimal integer, possibly followed by *,” possibly followed by an-
other unsigned decimal integer, always followed by ‘}’. The integers must lie between 0 and
RE_DUP_MAX (2557) inclusive, and if there are two of them, the first may not exceed the second. An
atom followed by a bound containing one integer i and no comma matches a sequence of exactly i matches
of the atom. An atom followed by a bound containing one integer i and a comma matches a sequence of i
or more matches of the atom. An atom followed by a bound containing two integers i and j matches a se-
quence of i through j (inclusive) matches of the atom.

An atom is a regular expression enclosed in ‘()’ (matching a match for the regular expression), an empty set
of ()’ (matching the null string)t, a bracket expression (see below), ‘.’ (matching any single character),
(matching the null string at the beginning of a line), ‘$’ (matching the null string at the end of a line), a “\’
followed by one of the characters ".[$()[*+?{\" (matching that character taken as an ordinary character), a
‘\” followed by any other charactert (matching that character taken as an ordinary character, as if the ‘\” had
not been presentt), or a single character with no other significance (matching that character). A “{’ fol-
lowed by a character other than a digit is an ordinary character, not the beginning of a boundt. It is illegal
to end an RE with ‘\",

A bracket expression is a list of characters enclosed in ‘[]’. It normally matches any single character from
the list (but see below). If the list begins with ™, it matches any single character (but see below) not from
the rest of the list. If two characters in the list are separated by ‘~’, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g. ‘[0-9]" in ASCII matches any deci-
mal digit. It is illegalt for two ranges to share an endpoint, e.g. ‘a—c—e’. Ranges are very collating-se-
quence-dependent, and portable programs should avoid relying on them.

o~y

To include a literal “]” in the list, make it the first character (following a possible ‘). To include a literal
‘=’ make it the first or last character, or the second endpoint of a range. To use a literal ‘-’ as the first end-
point of a range, enclose it in ‘[.” and “.]’ to make it a collating element (see below). With the exception of
these and some combinations using ‘[’ (see next paragraphs), all other special characters, including ‘\’, lose
their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character sequence that collates as if it
were a single character, or a collating-sequence name for either) enclosed in ‘[.” and “.]” stands for the se-
quence of characters of that collating element. The sequence is a single element of the bracket expression’s
list. A bracket expression containing a multi-character collating element can thus match more than one
character, e.g. if the collating sequence includes a ‘ch’ collating element, then the RE ‘[[.ch.]]*c’ matches
the first five characters of ‘chchcc’.

Within a bracket expression, a collating element enclosed in ‘[=’ and ‘=]’ is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there are
no other equivalent collating elements, the treatment is as if the enclosing delimiters were ‘[.” and “.]’.) For

25 Oct 1995 5

REGEX(7) REGEX(7)

example, if o and 6 are the members of an equivalence class, then ‘[[=0=]]", ‘[[=6=]]", and ‘[0d]" are all

synonymous. An equivalence class may nott be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in ‘[:” and *:]” stands for the list of all

characters belonging to that class. Standard character class hames are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit

These stand for the character classes defined in ctype(3). A locale may provide others. A character class

may not be used as an endpoint of a range.

There are two special casest of bracket expressions: the bracket expressions ‘[[:<:]]’ and ‘[[:>:]]’ match the
null string at the beginning and end of a word respectively. A word is defined as a sequence of word char-
acters which is neither preceded nor followed by word characters. A word character is an alnum character
(as defined by ctype(3)) or an underscore. This is an extension, compatible with but not specified by

POSIX 1003.2, and should be used with caution in software intended to be portable to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the one start-
ing earliest in the string. If the RE could match more than one substring starting at that point, it matches
the longest. Subexpressions also match the longest possible substrings, subject to the constraint that the
whole match be as long as possible, with subexpressions starting earlier in the RE taking priority over ones
starting later. Note that higher-level subexpressions thus take priority over their lower-level component

subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered longer than
no match at all. For example, ‘bb*’ matches the three middle characters of ‘abbbc’,
‘(wee|week)(knights|nights)” matches all ten characters of ‘weeknights’, when “(.*).*’ is matched against
‘abc’ the parenthesized subexpression matches all three characters, and when “(a*)*’ is matched against

‘bc’ both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g. ‘x’ be-
comes ‘[xX]’. When it appears inside a bracket expression, all case counterparts of it are added to the

bracket expression, so that (e.g.) ‘[x]’ becomes ‘[xX]’ and ‘["X]” becomes ‘["xX]’.

No particular limit is imposed on the length of REst. Programs intended to be portable should not employ
REs longer than 256 bytes, as an implementation can refuse to accept such REs and remain POSIX-compli-

ant.

Obsolete (“basic’) regular expressions differ in several respects. ‘|’, ‘+’, and ‘?” are ordinary characters
and there is no equivalent for their functionality. The delimiters for bounds are “\{* and “\}’, with ‘{’ and
‘}’ by themselves ordinary characters. The parentheses for nested subexpressions are ‘\(’ and “\)’, with *(’

and ‘)’ by themselves ordinary characters.

is an ordinary character except at the beginning of the RE ort

the beginning of a parenthesized subexpression, ‘$’ is an ordinary character except at the end of the RE ort
the end of a parenthesized subexpression, and ‘*’ is an ordinary character if it appears at the beginning of

the RE or the beginning of a parenthesized subexpression (after a possible leading

). Finally, there is one

new type of atom, a back reference: ‘\” followed by a non-zero decimal digit d matches the same sequence
of characters matched by the dth parenthesized subexpression (numbering subexpressions by the positions

of their opening parentheses, left to right), so that (e.g.) “\([bc]\)\1’ matches ‘bb’ or ‘cc’ but not “‘bc’.

SEE ALSO
regex(3)

POSIX 1003.2, section 2.8 (Regular Expression Notation).

HISTORY
Written by Henry Spencer, based on the 1003.2 spec.

6 25 Oct 1995

REGEX(7) REGEX(7)

BUGS

Having two kinds of REs is a botch.

The current 1003.2 spec says that ‘)’ is an ordinary character in the absence of an unmatched ‘(’; this was
an unintentional result of a wording error, and change is likely. Avoid relying on it.

Back references are a dreadful botch, posing major problems for efficient implementations. They are also
somewhat vaguely defined (does ‘a\(\(b\)*\2\)*d” match ‘abbbd’?). Avoid using them.

1003.2’s specification of case-independent matching is vague. The “one case implies all cases™ definition
given above is current consensus among implementors as to the right interpretation.

The syntax for word boundaries is incredibly ugly.

25 Oct 1995 7

	REGEX (3)
	REGEX (7)

